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This is sat_isﬁed if the following conditions hold,
N OF 9(OF\ 8 (oF
O a0 -5l ) -5 () =0
.. oF . OF .
(i) f (—-3—ujdx+ a—u:dy) du=0 (8.40)
oR

The equation (8.40 i) is the Euler equation. If u is prescribed on JR i.e.
du = 0 then the equation (8.40 i) is satisfied otherwise when u is not specified
on dR, we have '

a v
- -95; cos v-l-‘aa—li sinv=40 (8.41)
where v is the angle which the outward normal to the boundary dR makes
with the x axis. )

The conditions (8.41) are called narural or suppressible boundary conditions.

8.3.1 Ritz method :

In order to solve a given boundary value problem by the Ritz method, we
try to write the differential equation as the Euler equation of some variational
problem. This will give the appropriate expression for J [u]. We now reduce
this variational problem to a simple minimizing problem by assuming an
approximate function in the.form (8.5). Substituting (8.5) in (8.22), we get
JIw] as a function of the unknowns ay, aa, ..., an. For minimizing J[w], we
have

oIl y oF ;@
ol f(ﬁ,¢;+£¢; ) dx=0,j=1,2,., N (8.42)

a

which gives N equations in N unknowns. If ¢;(x) possess continuous second
order derivatives, then integrating by parts the first term in the integrand of
(8.42) we get '

b .
- d (O0F\ OF , ’ '
[ ¢,[_a—;(%,)+%] de=0=1,2, . ¥ (8.43)

Equations (8.43) are identical with the Galerkin equations (8.16) for differ-
ential equations, which are identical with the Euler equation (8.28). For the
differential equation

- d—‘%(pu’) +qu=r(x) (8.44)

with boundary conditions (8.23), it can be easily verified that with
F=pu'?+qu?-2ru
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the end points x; and x;41 such that the length of the element (¢) is unit may
be written as
x = xi+(xie1 = x)€
=(1-&)xi+Exin (8.49)

From (8.49) and (8.47), we get

() =TT N

Xi+t = Xi
and
. _Xiti—Xx — N
(ii) 1 f—x————M g Ni(x) (8.50)

The transformation (8.49) transforms or maps an element (¢) along the
x-axis into a standard interval [0, 1]. Similarly, if we choose the mid-point of
the element (¢) as the origin of the £-axis then the transformation

1
x=—;—(x,~+.\‘.-+1)+ —2—1“’)§ (8.51)

maps the subinterval [x;, x;+1] into a standard interval [—1, 1], where
1) = x4 1 — x; is the length of the element ().

The functions ¢ and (1 — ¢) in (8.50) are ratios of lengths and are called
length, local or natural coordinaies. We denote (1 —-€)and £ by L; and Liy1.
respectively. The coordinates Li(x) and L, 1(x) are not independent since we
have

Li{x)+Lini(x)=1 (8.52)
The equation (8.49) can also be written as
x=Li(xX)xi+ Lit+1(x)Xi+1 (8.53)

which shows that the mapping (8.49) is also an interpolation scheme that
gives the x coordinate of any point on the element (¢) when the correspond-
ing L; and L;.1 coordinates are known. The variation of (L;, Lis1) inside
the element (¢) is shown in Figure 8.2(b). Using (8.52) and (8.53), we obtain

L; xi xip 7V [ x 1 -1 Xip x
[Lm]=[1 1] [1]=‘-"f_+1"xf)[ 1 -x ] [1]
‘ §
=[Ni+1]

Thus we find that in the case of the linear piecewise approximate function
the local coordinates are also the shape functions,
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1
- ' _1 _1 - 3 _
LM'O'I Li+‘l'Z! leH"i 1Li+1 a3 'lLM-‘I,.x-
X (e) Xi 1

Fig. 8.2(b) Variation of length coordinates within element

The following differentiation and integration results hold over the
element (e)

oL, 1 0L+t _ 1

@ % xm—xi® 0x X=X
xi+l ( )

.. rot r! ! (xi1—Xi

(ii) J‘ LiLii dx:m (8.54)
Xy

where r and ¢ are positive integers.

Cubic Hermite polynomial ,

If the nodal values u; and i1 and the first derivative w and u; +1 are used
in constructing the piecewise polynomial over the element (e) (x; < x < x141)
then the degree of the interpolating polynomial is three and is called the
piecewise Hermite cubic polynomial. We have o

u@(x) = Ni(x)u;i + Hi(x)u} + Nig1(Xip1 + H:+1(x)u;+1 (8.55)
where
Nx)=1, Nix)=0, Hfx)=0  Hi(x)=1
Nf+1(Xf+1) =1, Nigi(xis1) =0, Hiri(xi+1) =0, Hizi(xipr) = 1L (8.56)

The shape functions Ny, Nis1, Hiand Hipp may be expressed in terms of L;
and L,+1 variables. We obtain

Ni(x)=L¥3-2L)
Hi(x) = (xix1 = x)LiLia
Nia(x)= L;;+ 1(3=2Li+1)
Hist(0) = —(xis1 = x)Lilis (8.57)

If the piecewise cubic polynomial (8.55) has the second derivative continuous t
at x;, i = 1(1)N, then it is called the cubic spline function (Def. 4.2). The conti-
nuity of the second derivative at x; gives the relation

1 2 2 1
— A V. .
i mi l+(hz h:+1) m'+h:+1 mi+1
R Rl (8.58)
i i+1
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where N@=[N{N2N3], ¢9=[us uz us]T

Ni(x, y)= ﬁ(an +b1x+c1y)
1
Na(x, y)= m(az +bax +c2y)

1
Ni(x, y) =575 (@3 +bax +c3y)

ar=xy3—Xx3y2, bi=y2—ys, c=x3—x2
a=xy1—x1y3, b2=y3—y1, 2=x1-Xx3
az=x1y2—x2y1, ba=yi—y2, ci=x2—x1 (8.64)
The functions Ni(x, y), i=1,2, 3 are called shape f unctions and defined in the
element (e). It is easily verified from (8.64) that
Ni(xy, y)) =8y (8.65)

where 8; is a kronecker delta, 8;;=1,i=j, 8;=0, i # J.
A point P(x, y) €(e) can be associated with the area coordinates (L1, L2, L3)
defined by

_area P23 _area P31 _area P12
= area 123’ 27 area 123’ ° area123

as shown in Figure 8.3(b). The area coordinate system is also called local
or natural coordinate system. From (8.64) and (8.66) we find that the area co-
ordinates satisfyv the following relations

() LitLat Ly=1

1 (8.66)

Li>0 i=1,2,3
(ify Li=Ni{x, ), L2a=Nax,y), Li=Nixx,y)

N, L ai b1 1 ( 1
1
(iii) N2 = Ll = m az b2 c2 \' X
Ny _ L3 as b3 c3 y
3

1 1//////////[[1..,

Fig. 8.3(b) Representation of local coordinates

-
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or
1 1 1 1 _] l_ Ly 3
| x |= x1 x2 x3 [ L, (8.67)
D I J Ls

Although three coordinates L1, Lz and L, are used to define a point P, only
two are independent since they must satisfy (8.67 ). The variation of (L, La,
Ls) inside an element (¢) is shown in Figure 8.3(c). The equations of the sides
2-3, 3-1 and 1-2 respectively are given by

Li=0, L2=0, Ly=0 (8.68)

3(0,1)

1(0,0) 2(1,0)
Fig. 8.3(c) Variation of local coordinates Fig. 8.3(d) Standard triangle

The ares coordinatés of the nodes 1, 2 and 3 of the element (e) are (1, 0, 0),
0, 1, 0) and (0, 0, 1), respectively. Further, the relation (8.67 iv) may be
written as :

x=(1— Ly~ Ly)x, +x2L24-x3L;3

y=(1-La=Ly)y1+ yaLy + »ls (8.069)
which transforms or maps the element (e) in x, ¥ coordinates into a standerd
triangle as shown in F igure 8.3(d).

The differéntiation of N{L, L, Ly) with respect to x and y may be writ-
ten as

ONi_ 0Ny 2Li | 0N, 3Ly , O, oL

ox dL; ox dL, 9Jx 6Ly Ox

ONi LON: 3Lt _ 0N, 3L, . ON, oL, -

% oL, oy Yo, 3t oL, dy ®.70)
where

3L: = bl 8L, Ci i= "’2’

T o= S, 3 @8.71)
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—

1 L 5 2
‘Fig. 8.3(f) Cubic element with ten nodes *
The shape functions N; may be assumed in the form
N;= af“L: +a¥L,+ agi)Ls + afi)Lle + a?"Lng + ag) LiLs+q%" LiL,
+a§ L3Ls+a’ L3y + a3 Ly Lo L (8.82)
Using the interpolating conditions wxi, y)=us, i =1(1)10 and (8.75), we
obtain
Ni=3L(3L-1)(3Li-2), i= 1,2,3
Ns=3LiL(3L,- 1), Neé=3L2Ly(3L2—1)
Ns=3L1L,(3L2-1), No=3LiL;(3L1—1)
N7=3L2L3(3L3~ 1), Ns=3LiLs(3L;—-1)

Ni1wo=27L11,L; (8.83)
We may use the relation
uto+ (s +u2+us) ~ F(ua + us + us + ur + ug + u9)=0 (8.84)

to eliminate w10 from (8.81) and obtain the piecewise cubic Lagrange inter-
polation polynomial dependent on nine nodal values w;, i =1(1)9.

Cubic Hermite polynomial

Here we construct a cubic polynomial by specifying u, du/dx and Ou/dy at
the nodes 1, 2 and 3 of the element (e) and u at an interior node 4, as shown
in Figure 8.3(g). We use for (8.73), p= 3, an alternative expression in the form

u)(x, y) =:zi:| [N,-(x, Yui+ Hi(x, y) (g—;)' + Ki(x, y)(gi;)i] +Naus (8.85)

=[N1H1K\N2H2K2N3H3K3N4]$©
where
€ =11 uy, Ups U2 Uxy Uy, U3 Uxy Uy, Us)T
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Fig. 8.3(g) Cubic Hermite element

QO u, ux, u, prescribed
@ u prescribed

The functions N;, H; and Kiare the shape functions to be determined by satis-
fying the interpolation conditions, We obtain

Ni=Li3~ 2L1)=-TLiLaL,
Hi=LY(c3La— 2L3)+(c2~ c3)L1LoLs
Ki=LibaLs = b5L) + (bs - o)L L1,
N2=L33~2L2)~ 71,151,
Hr= Lg(ans ~c3l1)+(c3— c)Lylals
Ka=L3(hsL; - biL3)+(by - b3)LiL,L;
Ni=L3(3- 2L3)-TL Lol
Hy=Li(coL, - c1l2)+(c1- c2)LiLaLs

K3 -=L§(b1Lz—b2L1)+(b2—b1)L1L2L3 ,
Ny= 27L1L2L3 (8.86)

where 5,’s and C/’s are given in (8.64).

8.4.3 Rectangular clement _

The rectangular network has already been used to develop difference
methods for the solution of partial differentia] equations. We discretize the
domain Q (see Figure 7.1) by drawing lines parallel to the x and y axes. We
take an arbitrary rectangular element (e) as shown in Figure 8.4(a) and de-
note the value of the function u (x, ) at the node ; by u;.

Linear Lagrange pol lynomial
Here the piecewise polynomial chosen is of the form
uXx, y)=a; +azx +asy+asxy (8.87)

where a;’s are defined for each element. Using the interpolating conditions
. v

Ui =u;, i=1(1)4 and solving the resulting linear equations, we may determine
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Quadratic Lagrange polynomial ,
The choice of the nodes on the rectangular element () is shown in Figure
8.4(c). The approximate piecewise function can be written as

u® (x, y)= ,‘:T, Ni(x, y) wi | (8.94)

1

+ d 3
8p— 4 +—
‘ .
1 5 %

Fig. 8.4(c) Rectangular-element with eight nodes

where the shape functions N; (x, v) are formed by taking products of the
Lagrange interpolation polynomials,

_ (x=x)(x=x5) _(y=y4 (y—ys)
N1 (x, y)—(xr-xz) (xi=xs) (yi—ya) (y1—ys)

- (x=xs5) (x=x1) (y—=ys) (y—y3)
N2 (x,y) (x2=xs) (x2—x1) (y2—ye) (y2—3)
(x=x) (x=x2)  (y-y7)
xs—x1) (xs—x2) (ys—y7)’

Ns (x, ) =(

The shape functions N; (x, ) in §, 7 coordinate system become at corner
nodes i=1,2,3,4

Ni(¢, m)=1 (L+E6) (1 +mm)

on mid-side nodes =57
Ni (¢, m)=1% (1=8) (1 +7m)
on mid-side nodes i=6,8
Nig,m=3 (1 +&£) (1-7) (8.95)

Cubic Lagrange polynomial
The distribution of nodes on the rectangular element (e) is shown in
Figure 8.4(d). The piecewise cubic polynomial is given by

u® (x, y)= 1|.221 Ni(x, y) wi (8.96)
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1 5 —‘8 2

Fig 8.4(d) Rectangular element with twelve nodes

where the shape functions N; in £, % coordinates become at corner nodes
i=1,2,3,4

i .
Ni (¢, )= 33 (1+€€) (14770 [9(£2 +72) - 10]
on mid-side nodes i=7,8,11, 12
Ni(E, )= 55 (1+86) (1=12) (1 +97)

and on mid-side nodes i=5,6,9 10

.9
Ni (¢, n)= 33 (L+Hmm) (1 -6 (1+9¢¢)) (8.97)
Cubic Hermite polynomial
. . . L. o
The function and its first order partial derivatives u, a%’: , a—; are specified

at the four corner nodes of the rectangular element (e) as shown in Figure
8.4(c). Satisfying the interpolation conditions, we get the cubic Hermite
polynomial

Y (x, y)=i:Z|',[Ni (x, ) urt Hi (x, ) (2—’;) +Ki (x, y)(j—)'j)i] (8.98)
where the shape functions Ni, H; and Ki in £, 7 coordinates are given by
M€ =g 0= €= D5 0-D €1 - Gen e
=D (=)= E+1) € 1)
Hi (6, =g (1=1) (= D2 (€+1)

Kim= =2 (=17 ¢=1) (1+1)



546 NUMFRICAL SOLUTIONS

8.4.5 Tetrahedron clement
We discretize the three dimensional region R using tetrahedron elements.
-We consider an arbitrary tetrahedron element (e) with four nodes labelled
1, 2, 3 and 4 as shown in Figure 8.6(a). The nodes I, 2 and 3 are labelled
in a counter clockwise sequence when veiwed from the node 4. The value of
the function u(x, y, ) at the node i is represented by ;.

b(x

L’YI. 3 24 )
(X1IY1 721,1 3(x3»y3,23)
2( xz; Yps 22)
Fig. 8.6(a) Tetrahedron clement "r.

Linear Lagrenze polynomial
The linear piccewise polynomial in each element has the form

WO =q-+bx+cy+d-=[l xy<z]a (8. 100)
where a=[a b ¢ d]T is to be determined using the mtcrpolanon conditions
W (xi, i z)=w,  i=1(1)4
We have '
=a+bxi+cy1+dn
wr=a-+hxat-cy2+d:
wy=a+bxz+cys+dzs
usg=a+bxa+cystd ‘ (8.101)
Solving for «, b, ¢ and d, we obtain

=5 V“" ——— (antty + otz + a3tis + Qatta)

b= bty + bauz + baus - baua).

1
6V®
c= 5717‘,7 (111 + cauz + c3us =+ carta)

d= —-17(—,)—((11111 + datis 4 dsus + datta) (8.102)



